Optimization of Airport Surface Traffic: A Case-study of Incheon International Airport

8 June 2017

Yeonju Eun*, Daekeun Jeon,

Myeongsook Jeong, Hyounkyong Kim,

Eunmi Oh, and Sungkwon Hong,

Korea Aerospace Research Institute

Hanbong Lee, Yoon Jung

NASA Ames Research Center

Zhifan Zhu

SGT, NASA Ames Research Center

Contents

- Introduction
- Scheduling Requirements
- Runway Scheduling
- Taxiway Scheduling
- Optimization Test
- Conclusion

Introduction

- Incheon International Airport (ICN) in South Korea
 - Surface congestion due to continuously growing traffic demands
 - Airport expansion project in progress
 - Growing need for CDM and controller decision support tool

Research Purpose

- SW Development of a decision support tool for IADS (Integrated Arrival, Departure, Surface) operation in ICN
- Research collaboration between Korea Aerospace Research Institute (KARI) and National Aeronautics and Space Administration (NASA)
 - Operational characteristics analysis
 - · Simulation model development and validation

- Surface/departure scheduler SW development
- · Simulation-based test environment development
- Integrated test (including human-in-the-loop simulation)

Introduction

- Research Direction
 - Based on 3-step approach

MILP-based optimization models were developed and tested.

Departure route directions and a shared departure fix from the multiple runways in ICN

Multiple Take-off Time Windows

- Multiple runway scheduling
 - With shared departure fixes
- TMIs (Traffic Management Initiatives)
 - CFR
 - EDCT
 - MIT/MDI
 - Multiple takeoff time windows
- Runway crossings
 - Departure runway crossings by arrival flights
 - Arrival runway crossings by departure freighters
- Gate holding and pushback time limit
 - Earliest and/or latest takeoff time limit
- ELDT (Expected Landing Time)
 - Assumed to be given and not adjustable
- Taxi route of each aircraft
 - Assumed to be given and not adjustable

Runway Scheduling

minimize
$$\sum_{i \in D} (t_i - \text{EarliestT}_i)$$
subject to
$$z_{ij} + z_{ji} = 1, \ \forall i, j \in D \cup A \cup C, \ i \neq j$$

$$t_j - t_i - \text{Rsep}_{ij} \geq -M(1 - z_{ij}), \ \forall i, j \in D \cup A \cup C, \ i \neq j$$

$$\text{EarliestT}_i \leq t_i \leq \text{LatestT}_i, \ \forall i, j \in D \cup A \cup C, \ i \neq j$$

$$z_{ij} \in \{0, 1\}, \ \forall i, j \in D \cup A \cup C$$

$$z_{ij} = 1, \ \forall i, j \in D_{Class_k}, \ \text{EarliestT}_i < \text{EarliestT}_j, \ i \neq j$$

For ICN RWY scheduler,

$$\forall i \in D, \quad \begin{cases} \text{EarliestT}_i = \text{EarliestOffT}_i \\ \text{LatestT}_i = \text{EarliestOffT}_i + \text{MaxRunwayDelayT}_i \end{cases}$$

$$\forall i \in A, \quad \text{EarliestT}_i = \text{LatestT}_i = \text{OnT}_i$$

$$\forall i \in C, \quad \begin{cases} \text{EarliestT}_i = \text{OnT}_i + \text{TransT}_i \\ \text{LatestT}_i = \text{min} \left\{ \text{OnT}_j + \text{TransT}_j \middle| \forall j \in C : \text{OnT}_i < \text{OnT}_j \right\} \end{cases}$$

Runway Scheduling

<Additional Constraints for TMIs>

- EDCT, CFR → Adjustment of EarliestT_i and LatestT_i
- MIT(Miles-In-Trail), MDI (Minimum Departure Interval)

In case of MIT)
$$t_{j} - t_{i} + \left(\operatorname{TansT}_{j}^{k} - \operatorname{TransT}_{j}^{k} - \frac{\operatorname{MIT}_{k}}{\operatorname{TransV}_{i}^{k}}\right) \geq -M\left(1 - z_{ij}\right), \ \forall i, j \in D_{MIT_{k}}, \ i \neq j$$
 In case of MDI)
$$t_{j} - t_{i} + \left(\operatorname{MDI}_{k}\right) \geq -M\left(1 - z_{ij}\right), \ \forall i, j \in D_{MDI_{k}}, \ i \neq j$$

Multiple Take-off Time Windows

$$\textit{TimeW}_i = \left\{ \left[\mathsf{MinTime}_{i,1}, \mathsf{MaxTime}_{i,1} \right], \left[\mathsf{MinTime}_{i,2}, \mathsf{MaxTime}_{i,2} \right], \ \cdots, \ \left[\mathsf{MinTime}_{i,N_{W_i}}, \mathsf{MaxTime}_{i,N_{W_i}} \right] \right\}$$

$$s_i^k = \begin{cases} 1 & \text{if } \text{MinTime}_{i,k} \le t_i \le \text{MaxTime}_{i,k} \\ 0 & \text{otherwise} \end{cases}$$

$$s_i^k \in \{1,0\}, \quad \forall i \in D_{TimeW}, \ k \in (1.N_{W_i}), \qquad \sum_{k=1}^{N_{W_i}} s_i^k = 1, \quad \forall i \in D_{TimeW}$$

minimize
$$\alpha_p \left(\sum_{i \in D, r \in R} \max [t_{i,r} - \text{DesiredOffT}_{i,r}, 0] \right)$$

Late Take-off Time

$$+\alpha_d \left(\sum_{i \in D, r \in R} t_{i,r} - \sum_{i \in D, g \in G} t_{i,g}\right) + \alpha_a \left(\sum_{i \in A, g \in G} t_{i,g} - \sum_{i \in A, r \in R} t_{i,r}\right)$$

Departure Taxi-out Time

Arrival Taxi-in Time

$$z_{ii}^u \in \{0, 1\}, \quad \forall i, j \in D \cup A, i \neq j, u \in I$$
 Passage sequence of flight i and j at node u

$$t_{i,u} \ge 0, \quad \forall i \in D \cup A, \ u \in N$$

 $t_{i,u} \ge 0$, $\forall i \in D \bigcup A$, $u \in N$ Passage time of flight i at node u

$$z_{ij}^{u} + z_{ji}^{u} = 1$$
, $\forall i,j \in D \cup A$, $i \neq j$, $u \in I$

Passage sequence at node u

$$t_{i,v} \ge t_{i,u} + \text{MinTaxiT}_{uv}, \quad \forall i \in D \cup A, \quad (u,v) \in E$$

Minimum travel time in link u-v

$$z_{ii}^{u} = z_{ii}^{v}, \quad \forall i,j \in D \cup A, \ i \neq j, \ u,v \in I, \ (u,v) \in E$$

No overtaking allowed along taxiways

$$z_{ii}^{u} + z_{ii}^{v} = 1$$
, $\forall i, j \in D \cup A$, $i \neq j$, $u, v \in I$, $(u, v) \in E$

Conflict free in bi-directional link

subject to (continued)

$$t_{j,u} - t_{i,u} - \left(t_{i,v} - t_{i,u}\right) \frac{\text{Dsep}_{ij}}{l_{uv}} \ge -\left(1 - z_{ij}^{u}\right) M, \quad \forall i, j \in D \cup A, \quad i \neq j, \quad u \in I, \quad (u,v) \in E$$

$$t_{j,v} - t_{i,v} - \left(t_{j,v} - t_{j,u}\right) \frac{\text{Dsep}_{ij}}{l_{uv}} \ge -\left(1 - z_{ij}^{v}\right) M, \quad \forall i, j \in D \cup A, \quad i \ne j, \quad v \in I, \quad (u,v) \in E$$

Maintaining required separations at intersections

$$t_{j,r} - t_{i,r} - \operatorname{Rsep}_{ij} \ge -(1 - z_{ij}^r)M$$
, $\forall i, j \in D, i \ne j, r \in R$ Runway separation

$$t_{i,r} \ge \text{EarliestOffT}_{i,r}, \quad \forall i \in D, \ r \in R \quad \text{Earliest take-off time}$$

$$t_{i,g} \ge \mathrm{Out} T_{i,g}, \quad \forall i \in D, \ g \in G$$
 Pushback ready time

$$t_{i,g} \leq \operatorname{OutT}_{i,g} + \operatorname{MaxGateHold}_{i,g}, \quad \forall i \in D, \ g \in G$$
 Maximum gate holding time

$$t_{i,r} = \operatorname{OnT}_{i,r}, \quad \forall i \in A, \ r \in R$$
 Arrival landing time

$$t_{i,u} = \operatorname{Frozen} T_{i,u}, \quad \forall i \in D' \bigcup A', \ u \in N$$
 Frozen schedule

<Additional Constraints for RWY crossings >

Departure Tracks

 C_{dep} : Set of departure freighters (which need to cross the arrival runway.) $C_{dep} \subset D$

crossing sequence = departure sequence

$$z_{ij}^{c} = z_{ij}^{r} \quad \forall i, j \in C_{dep}, i \neq j, r \in R$$

Runway separation with Arrivals

$$\begin{aligned} t_{j,r} - t_{i,c} - \operatorname{Rsep}_{ij} &\geq -M \Big(1 - z_{ij}^{crs} \Big) \\ t_{i,c} - t_{j,r} - \operatorname{Rsep}_{ji} &\geq -M \cdot z_{ij}^{crs} \\ z_{ij}^{crs} &\in \{0,1\}, \quad \forall (i,j) \in (C_{dep} \times A) \end{aligned}$$

ICN Node-link model for taxiway scheduling

Optimization Tests

RWY separation matrix

Separation between Dep and Dep (sec)

		Tailing Aircraft					
		L	М	Н	S		
Leading	لــ	120	120	120	120		
aircraft	М	180	120	120	120		
	Н	180	180	120	120		
	S	180	180	120	120		

Don	اـ	М	Ι	S
Dep	80	52	45	45

۸rr	اــ	М	Ι	S	
Arr	85	47	40	40	

Crs	L	М	Η	S
Cis	30	30	30	30

RWY occupancy times (sec)

Separation between Dep and Arr: RWY occupancy time of a preceding aircraft + 10sec Separation between Dep and Crs: RWY occupancy time of a preceding aircraft + 10sec

Separation between operations on independent RWYs : 0sec

Optimization Tests

Single Scenario Test

- Purpose) Optimization results check for both runway scheduling and taxiway scheduling.
- Test Scenario) Based on the real operation data of April 2015, the number of departures was assumed to be increased by 30% from a normal traffic volume.

Monte-Carlo Test

- Purpose) Computation time performance check for the multiple runway scheduling problem.
- Test Scenario) Number of departures and arrivals are assumed to be same with the current peak time operation. For each test case, 100 randomly generated scenarios were used.

Optimization Tests – single scenario test

Scenario)

48 departures + 12 arrivals during 09:00-10:00

- 19 departures + 12 arrivals + 9 crossings on RWY33/15
- 29 departures on RWY34/16
- 4 departures from RWY33/15 and 11 departures from RWY34/16 merge into same route (South-bound)

12	12 on L	L	М	Н	S	0 DAY/DMV grouping appempagied)+ 2 CCO			
Arrivals	Arrivals RWY33/15		3	9		9 PAX(RWY crossing accompanied)+ 3 CGO)+ 3 CGO
48 19 on RWY33/15 Departures 29 on RWY34/16		5	10	4	W-bound	S-bound	SE-bound	E-bound	
	RWY33/15	RWY33/15	5	13	I	0	4	8	7
			13	16		18	11	0	0

Constraints)

CPS: 3

TMI: MIT on West-bound/South-bound

Optimization Tests – single scenario test

NASA

Optimization Tests – single scenario test

Averaged taxi-out time and delay per departure aircraft

Two different methods for the multiple runway scheduling problem

Test scenarios

- 40 departures + 20 arrivals for 1 hour (the number of departure runways: 2)
- 15NM MIT separation on south-bound departures
 - Involves all south-bound departures from both runways to the shared departure fix.
- 100 random scenarios for each test case

	The total number of departures = 40							
	from RWY 33L/15R (to the shared fix)	from RWY 34/16 (to the shared fix)						
Case 0	15 (5)	25 (10)						
Case I	14 (4)	26 (11)						
Case 2	13 (3)	27 (12)						
Case 3	12 (2)	28 (13)						
Case 4	11 (1)	29 (14)						
Case 5	10 (0)	30 (15)						

- The total number of the south-bound departures to the shared departure fix are same.
- The south-bound departures which take-off from RWY 33L/15R were re-assigned to RWY34/16 one-by-one over case 0-5.

Test results: computation time comparison

Computation time comparison in a log scale

Test results: Optimization cost comparison

Optimization cost comparison

Cost improvements over FCFS solution

Conclusion

- Developed the optimization models for airport surface traffic scheduling
 - MILP-based optimization models for runway scheduling and taxiway scheduling were developed and tested.
 - ▶ TMIs and operational characteristics which are specific to ICN were incorporated.
 - Multiple runway scheduling with consideration for MIT(Miles-In-Trail) separation at the shared departure fix
 - 'Multiple take-off time windows' constraints
 - Two different types of runway crossings on the coupled runways 33L/15R and 33R/15L.
- Suggested a method for better computation time performance
 - The sequential optimization using 'multiple take-off time windows' was proposed.
 - The sequential optimization shows much better performance with reasonably low cost for the multiple runway scheduling problem.

Future Works

- Integration of the additional requirements from ANSP (Air Navigation Service Provider) of ICN, such as cruise altitude assignment to the departure flights in pre-departure sequencing stage.
- Runway assignment problem for runway balancing at an airport with multiple departure runways.

ThankYou

Contact to: yjeun@kari.re.kr

